Главная · Безопасность · Нет питания на компьютере. Блоки питания компьютера — инструкция по ремонту своими руками

Нет питания на компьютере. Блоки питания компьютера — инструкция по ремонту своими руками

Случаи выхода из строя блоков питания в компьютере не редкость. Причинами тому являются:

1. Выбросы напряжения в электросети;

2. Низкое качество изготовления, особенно касается дешевых блоков питания и системных блоков;

3. Неудачные конструктивные и схемотехнические решения;

4. Применение низкокачественных компонентов при изготовлениии;

Если этот процесс принесет ожидаемые результаты как можно быстрее, создайте резервную копию и замените ненадежный диск на новый. Кроме того, важно заботиться о чистоте вашего компьютера, потому что пыль, которая препятствует охлаждению компонентов, может вызвать проблемы. перегревать их.

Ниже мы приводим список наиболее распространенных сбоев оборудования и кратко описываем, как их удалить. Ошибка 1 - Мышь или клавиатура отказываются подчиняться. Причина в основном связана со стороны водителя. Услуга, требуемая для воспроизведения звука, отключена.

5. Перегрев элементов из-за неудачного расположения системного блока, загрязнения блока питания, остановки вентилятора охлаждения.

Какие «симптомы» неисправности блока питания в компьютере?

Чаще всего это полное отсутствие признаков жизни системного блока, то есть ничего не гудит, не горят светодиоды индикации, нет звуковых сигналов.

Решение. Щелкните правой кнопкой мыши компьютер и выберите «Управление». Разверните раздел «Службы и приложения» Услуги. В противном случае дважды щелкните службу и запустите автозапуск. Если ваш носитель не указан в окне управления дисками, посетите веб-сайт производителя, загрузите и установите последний драйвер.

Затем щелкните правой кнопкой мыши диск и выберите «Изменить букву и путь к диску». Нажмите «Добавить», выберите «Присвоить следующую букву диска» и выберите одну из доступных букв. Уязвимость 4 - компьютер не подключается к Интернету. Сначала определите, какой протокол используется для передачи данных. Снимите флажок «Протокол Интернета версии 6».

В некоторых случаях не стартует материнская плата. При этом могут крутиться вентиляторы, гореть индикация, издавать звуки приводы и жесткий диск, но на экране монитора ничего не появляется.


Иногда системный блок при включении начинает подавать признаки жизни на несколько секунд и тут же выключается по причине срабатывания защиты блока питания от перегрузок.

Аналогичным образом вы избавитесь от ускорителей Интернета, которые не полностью удалены.


Неудача 5 - частая зависание системы. Проверьте напряжение питания и максимальную частоту в руководстве по эксплуатации или непосредственно на диске. При необходимости отрегулируйте настройки.

Однако, если вы не найдете неточностей, вы должны тщательно протестировать память на предмет возможной неисправности. Чтобы определить, какой модуль вышел из строя, вам необходимо изучить каждый из них отдельно. Перед устранением неполадок определите источник питания, используя приведенные ниже примеры. Чтобы определить причину проблемы и выяснить, какие решения доступны, выполните следующие действия.

Для того чтобы окончательно убедиться в неисправности блока питания нужно открыть правую крышку системного блока, если смотреть сзади. Вытащить основной штеккер основного разъёма блока питания, который имеет 20 или 24 контакта, из гнезда материнской платы, и замкнуть контакты с зелёным (иногда серым) и ближайшим чёрным проводом. Если при этом блок питания запустится, то, скорее всего, виновата материнская плата.

Иногда при подключении источника питания к розетке можно обнаружить искры. Это обычно нормальное явление, которое может возникать при подключении любого электрического устройства к выходу. Если источник искр является элементом, отличным от штырьков штепсельной вилки, если вы заметили повреждение или обесцвечивание источника питания, или вас беспокоит другая проблема с искрообразованием.

Известно, что одним из наиболее важных компонентов компьютера является источник питания. В зависимости от его качества остальные компоненты работают или нет в оптимальных параметрах, для которых они были разработаны производителем. На рынке существует множество моделей питания, но их качество часто вызывает сомнения.

Запуск блока питания можно определить по вращению вентилятора блока питания, если он исправен и щелчкам приводов, но для надёжности лучше проверить напряжения на разъёме. Между контактами с черным и красным проводами - 5в, между черным и желтым - 12в, между черным и розовым - 3,3в; между черным и фиолетовым - 5в дежурного напряжения. Минус на черном, а плюс на цветных. Для того чтобы убедиться что блок питания запущен достаточно измерить одно из напряжений, кроме «дежурных» 5в на фиолетовом проводе.

Из-за этого, без обобщения, это часто происходит, когда компьютер не запускается, не зависает или не перезапускается, а основным виновником является даже источник питания. К сожалению, такие случаи встречаются довольно часто в компьютерах с дешевыми источниками питания. Что еще более неприятно для дешевых источников и почему бы не признать это, низкое качество заключается в том, что из-за неисправности он влияет на остальные компоненты компьютера, что приводит к преждевременному старению деталей, раздутым конденсаторам, знаменитым «плохим», На жесткие диски и многое другое.

Иногда пользователи начинают искать предохранитель. Не ищите, снаружи их нет. Есть один внутри, но менять его в большинстве случев не только бесполезно, но опасно и вредно, так как это может привести к ещё большим проблемам.

Если обнаружится, что блок питания неисправен, то в большинстве случаев лучше его заменить, но можно и, если это экономически целесообразно.

Теперь, после этого небольшого введения, давайте посмотрим, что мы можем сделать, если компьютер не запускается. В такой ситуации есть две причины. В источнике питания не работает один из дефектных компонентов, что приводит к тому, что источник входит в защитную систему , состояние аварийности остается до устранения причины.

Те, которые перечислены ниже, относятся только к внешней проверке источника, не мешая ему. Это делается только уполномоченным персоналом, в противном случае существует опасность поражения электрическим током ! После отключения питания от сети мы отключим разъемы на вторичном источнике питания на материнской плате, жестком диске, оптическом приводе, видеокарте, где это применимо, и т.д. все вторичные разъемы должны быть свободными. Как только мы это сделаем, скрепку для бумаг или лишенный провод, мы сделаем ковш, который мы вставим в 20 или 24-контактный разъем питания, который питает материнскую плату.

При покупке нового блока питания нужно, прежде всего, учитывать мощность, которая не должна быть меньше прежнего. Также необходимо обратить внимание на выходные разъёмы, чтобы была возможность подключить все устройства системного блока, хотя в необходимых случаях проблемы подключения могут быть решены при помощи переходников. О том, как выбрать блок питания нужного качества можно прочитать.

Эта колода будет сделана между зелеными и черными нитями. Мост имеет роль запуска источника без материнской платы и кнопки питания. На этом этапе мы увидим специфическую симптоматику следующим образом. Мы поговорим немного о пункте 2, потому что здесь также есть несколько ситуаций, а именно.

Отклонения не должны превышать ± 5% от заданного напряжения на корпусе источника! Как видно из вышесказанного, проверка источника питания не является сложной задачей, но требует внимания и мало практического смысла. Простой проверки достаточно, для остальных, обратитесь в свои специализированные центры или замените источник на лучшее качество, если найдете его дефектным! За дополнительными вопросами используйте!

Нужно ли ремонтировать блок питания самостоятельно? Если Вы не обладаете хотя-бы элементарными знаниями и навыками в области электроники, однозначно нет. Во-первых, Вы скорее всего не сможете это сделать, во-вторых это опасно для жизни и здоровья если не соблюдать правила безопасности.

Для тех, кто всё-таки решил заняться ремонтом блока питания, есть возможность ознакомиться с моим личным опытом и соображениями по этому поводу.

Как это печально, но работа компьютера, который выжил, пошатнулся или каким-то образом сработал, должен быть встречен каждым пользователем. И в этой ситуации возникает вопрос: что делать? Один из вариантов - обратиться в службу ремонта компьютера или обратиться за помощью к друзьям, которые имеют опыт работы с компьютером. Но во многих ситуациях неисправность компьютера может быть обнаружена сама по себе, даже не имея большого опыта в этой области. Если у вас есть желание, доверьтесь себе и немного времени, эта статья для вас.

Как начать ремонт компьютера собственными руками? Начиная все время требуется простейшее. Прежде всего, необходимо проверить, хорошо ли подключены все шнуры питания, шнур питания и монитор, проверьте источник Интернета и беспроводной маршрутизатор. И только после такой проверки необходимо перейти к более серьезному отказу от вины.

В жизни каждого радиолюбителя рано или поздно наступает момент, когда ему приходится начинать осваивать мелкий ремонт техники. Это могут быть настольные компьютерные колонки, планшет, мобильный телефон и еще какие-нибудь гаджеты. Не ошибусь, если скажу, что почти каждый радиолюбитель пробовал чинить свой компьютер. Кому-то это удавалось, а кто-то все таки нес его в сервис-центр.

Но есть несколько предупреждений раньше. Очень важно учитывать требования безопасности при ремонте электрооборудования, включая компьютер. После начала работы нам может понадобиться электроинструмент: маленькая фигурная отвертка, простая отвертка, пинцет. Также может потребоваться наличие баллона с сжатым воздухом, поэтому очень удобно раздувать пыль и жидкость по электронной почте. контакт чистка. С компьютерами и нагрузкой на платформу следует обращаться с особой осторожностью. Перед началом ремонта компьютера вы должны снять статический заряд с вашего собственного контакта с радиатором центрального отопления или с любой другой заземленной структурой. В крайнем случае вы можете коснуться незакрепленной части корпуса компьютера, и было бы хорошо, если вы повторите это несколько раз, пока вы ремонтируете свой компьютер. Все работы с компьютерными деталями должны выполняться после отключения питания. . Давайте рассмотрим возможные причины сбоя компьютера.

В этой статье мы с вами разберем основы самостоятельной диагностики неисправностей блока питания ПК.

Давайте предположим, что нам в руки попался блок питания (БП) от компьютера. Для начала нам надо убедиться, рабочий ли он?Кстати, нужно учитывать, что дежурное напряжение +5 Вольт присутствует сразу после подключения сетевого кабеля к блоку питания.

Если вы попытаетесь нажать кнопку питания, на любом компьютере не отображаются признаки жизни, одна из причин может быть самой кнопкой питания. Но этот вариант нельзя сразу исключить. Часто контакты имеют цветную маркировку, и в этом случае ищите зеленый цвет.

Если компьютер затем включается, мы можем сделать вывод, что кнопка питания повреждена. Ну, если вы не продолжаете включать, тогда мы будем искать ошибку дальше. Компьютерное питание - довольно сложное электронное устройство. В хорошем «выдувании» предусмотрена защита от короткого замыкания. Очень вероятно, что один из компонентов компьютера поврежден и не позволяет ему.

Если его нету, то не лишним будет прозвонить шнур питания на целостность жил мультиметром в режиме звуковой прозвонки. Также не забываем прозвонить кнопку и предохранитель. Если с сетевым шнуром все ОК, то включаем блок питания ПК в сеть и запускаем без материнской платы путем замыкания двух контактов: PS-ON и COM . PS-ON сокращенно с англ. - Power Supply On - дословно как "источник питания включить" . COM сокращенно от англ. Сommon - общий. К контакту PS-ON подходит провод зеленого цвета, а "общий" он же минус - это провода черного цвета.

После каждого шага попробуйте включить компьютер. Не забудьте отсоединить шнур питания от компьютера перед удалением каких-либо компонентов. Это также необходимо, так как некоторые из них не могут работать даже после удаления неактивного компонента, вам необходимо отключить их от источника питания, а затем снова включить их.

Если в какой-то момент на компьютере «восстановить» и включить, последний удаленный модуль, скорее всего, будет неисправен. После этого вы можете разместить все на месте, за исключением неактивной части, и попытаться перезагрузить компьютер. Вполне возможно, что компьютер не сможет нормально работать после удаления неактивного компонента компьютера.

На современных БП идет разъем 24 Pin. На более старых - 20 Pin.

Замкнуть эти два контакта проще всего разогнутой канцелярской скрепкой

Если в этой проверке не обнаружен сбой компьютера, вы должны проверить сам блок питания. Лучшим вариантом для проверки питания является попытка подключить операционную систему. Но если у вас его нет, вы можете просто подключить его к сети и подключить контакты зеленым и любым черным в основном соединении. Важно знать, что некоторые блоки питания не могут нормально работать без нагрузки. Поэтому лучше всего подключить к нему старый ненужный жесткий диск. Кроме того, при проверке все еще существует небольшая вероятность того, что тестируемое устройство имеет проблемы.

Хотя теоретически для этой цели сгодится любой металлический предмет или проводок. Даже можно использовать тот же самый пинцет.

Исправный блок питания у нас должен сразу включиться. Кулер завращается и появится напряжение на всех разъемах блока питания.

Со временем источники питания больше не смогут справиться с требуемым электронным письмом. струи. Если нет результатов для всех модулей и компонентов, то с большой вероятностью возможно, что материнская плата, вероятно, будет повреждена. В некоторых случаях он может быть реактивирован. Блок питания ноутбука предназначен для питания компьютера, подключив его к адаптеру вашего компьютера. Обратите внимание, что неисправность в электрической розетке классифицируется как серьезная ошибка. Неисправность отключения питания в таймере может привести к повреждению материнской платы компьютера.

Если наш компьютер работает со сбоями, то нелишним будет проверить на его разъемах соответствие величины напряжения на его контактах. Да и вообще, когда компьютер глючит и часто вылазит синий экран, неплохо было бы проверить напряжение в самой системе, скачав небольшую программку для диагностики ПК. Я рекомендую программу AIDA. В ней сразу можно увидеть, в норме ли напряжение в системе, виноват ли в этом блок питания или все-таки "мандит" материнская плата, или даже что-то другое.

Ремонт материнской платы в этом случае будет стоить более одного раза, чем ремонт сетевой розетки. Следует иметь в виду, что почти все компьютеры питаются от электрической розетки без аккумулятора компьютера. Если компьютер не питается от электрической розетки от аккумулятора, это может быть одним из симптомов неисправности электрической розетки компьютера. Своевременное изменение электропитания защищает вас от покупки новой материнской платы.

Изменение электропитания компьютера, цена

Симптомы сбоя электропитания. Если вы заметили подобные симптомы неисправности, обязательно обратитесь в мастерскую по ремонту компьютеров для замены электрической розетки.

Электрическая розетка компьютера проскальзывает вниз

Наиболее распространенные ошибки.

Вот скрин с программы AIDA моего ПК. Как мы видим, все напряжения в норме:

Если есть какое-либо приличное отклонение напряжения, то это уже ненормально. Кстати, покупая б/у компьютер, ВСЕГДА закачивайте на него эту программку и полностью проверяйте все напряжения и другие параметры системы. Проверено на горьком опыте:-(.

Если же все-таки величина напряжения сильно отличается на самом разъеме блока питания, то блок надо попытаться отремонтировать. Если вы вообще очень плохо дружите с компьютерной техникой и ремонтами, то при отсутствии опыта его лучше заменить. Нередки случаи, когда НЕисправный блок питания при выходе из строя “утягивал” за собой часть компьютера. Чаще всего при этом выходит из строя материнская плата. Как этого можно избежать?

На блоке питания экономить никогда нельзя и нужно всегда иметь небольшой запас по мощности. Желательно не покупать дешевые блоки питания NONAME.

и POWER MAN

Как быть, если вы слабо разбираетесь в марках и моделях блоков питания, а на новый и качественный мамка не дает денег))? Желательно, чтобы в нем стоял вентилятор 12 См, а не 8 См.

Ниже на фото блок питания с вентилятором 12 см.

Такие вентиляторы обеспечивают лучшее охлаждение радиодеталей блока питания. Нужно также помнить еще одно правило: хороший блок питания не может быть легким . Если блок питания легкий, значит в нем применены радиаторы маленького сечения и такой блок питания будет при работе перегреваться при номинальных нагрузках . А что происходит при перегреве? При перегреве некоторые радиоэлементы, особенно полупроводники и конденсаторы, меняют свои номиналы и вся схема в целом работает неправильно, что конечно же, скажется и на работе блока питания.

Также не забывайте хотя бы раз в год чистить свой блок питания от пыли. Пыль является "одеялом" для радиоэлементов, под которым они могут неправильно функционировать или даже "сдохнуть" от перегрева.

Самая частая поломка БП - это силовые полупроводнки и конденсаторы. Если есть запах горелого кремния, то надо смотреть, что сгорело из диодов или транзисторов. Неисправные конденсаторы определяются визуальным осмотром. Раскрывшиеся, вздутые, с подтекающим электролитом - это первый признак того, что надо срочно их менять.

При замене надо учитывать, что в блоках питания стоят конденсаторы с низким эквивалентным последовательным сопротивлением (ESR) . Так что в этом случае вам стоит обзавестись ESR-метром и выбирать конденсаторы как можно более с низким ESR. Вот небольшая табличка сопротивлений для конденсаторов различной емкости и напряжений:

Здесь надо подбирать конденсаторы таким образом, чтобы значение сопротивления было не больше, чем указано в таблице.

При замене конденсаторов важны еще также два параметра: емкость и их рабочее напряжение . Они указываются на корпусе конденсатора:

Как быть, если в магазине есть конденсаторы нужного номинала, но рассчитанные на большее рабочее напряжение? Их также можно ставить в схемы при ремонте, но нужно учитывать, что у конденсаторов, рассчитанных на большее рабочее напряжение обычно и габариты больше.

Если у нас блок питания запускается, то мы меряем напряжение на его выходном разъеме или разъемах мультиметром. В большинстве случаев при измерении напряжения блоков питания ATX, бывает достаточно выбрать предел DCV 20 вольт.

Существуют два способа диагностики:

Проведение измерений на “горячую” во включенном устройстве

Проведение измерений в обесточенном устройстве

Что же мы можем померять и каким способом проводятся эти измерения? Нас интересует измерение напряжения в указанных точках блока питания, измерение сопротивления между определенными точками, звуковая прозвонка на отсутствие или наличие замыкания, а также измерение силы тока. Давайте разберем подробнее.

Измерение напряжения.

Если вы ремонтируете какое-либо устройство и имеете принципиальную схему на него, на ней часто указывается, какое напряжение должно быть в контрольных точках на схеме. Разумеется, вы не ограничены только этими контрольными точками и можете померять разность потенциалов или напряжение в любой точке блока питания или любого другого ремонтируемого устройства. Но для этого вы должны уметь читать схемы и уметь их анализировать. Более подробно, как измерять напряжение мультиметром, можно прочитать в этой статье.

Измерение сопротивления.

Любая часть схемы имеет какое-то сопротивление. Если при замере сопротивления на экране мультиметра единица, это значит, что в нашем случае сопротивление выше, чем предел измерения сопротивления выбранный нами. Приведу пример, например, мы измеряем сопротивление части схемы, состоящей условно, из резистора известного нам номинала, и дросселя. Как мы знаем, дроссель - это грубо говоря, всего лишь кусок проволоки, обладающий небольшим сопротивлением, а номинал резистора нам известен. На экране мультиметра мы видим сопротивление несколько большее, чем номинал нашего резистора. Проанализировав схему, мы приходим к выводу, что эти радиодетали у нас рабочие и с ними обеспечен на плате хороший контакт. Хотя поначалу, при недостатке опыта, желательно прозванивать все детали по отдельности. Также нужно учитывать, что параллельно подключенные радиодетали влияют друг на друга при измерении сопротивления. Вспомните параллельное подключение резисторов и все поймете. Более подробно про измерение сопротивления можно прочитать.

Звуковая прозвонка.

Если раздается звуковой сигнал, это означает, что сопротивление между щупами, а соответственно и участком цепи, подключенных к её концам, рано нулю, или близко к этому. С её помощью мы можем убедиться в наличии или отсутствии замыкания, на плате. Также можно обнаружить есть контакт на схеме, или нет, например, в случае обрыва дорожки или непропая, или подобной неисправности.

Измерение протекающего тока в цепи

При измерениии силы тока в цепи, требуется вмешательство в конструкцию платы, например путем отпаивания одного из выводов радиодетали. Потому что, как мы помним, амперметр у нас подключается в разрыв цепи. Как измерить силу тока в цепи, можно прочитать в этой статье.

Используя эти четыре метода измерения с помощью одного только мультиметра можно произвести диагностику очень большого количества неисправностей в схемах практически любого электронного устройства.

Как говорится, в электрике есть две основных неисправности: контакт есть там, где его не должно быть, и нет контакта там, где он должен быть . Что означает эта поговорка на практике? Например, при сгорании какой-либо радиодетали мы получаем короткое замыкание , являющееся аварийным для нашей схемы. Например, это может быть пробой транзистора. В схемах может случится и обрыв, при котором ток в нашей цепи течь не может. Например, разрыв дорожки или контактов, по которым течет ток. Также это может быть обрыв провода и тому подобное. В этом случае наше сопротивление становится, условно говоря, бесконечности.

Конечно, существует еще третий вариант: изменение параметров радиодетали. Например, как в случае с тем же электролитически м конденсатором, или подгорание контактов выключателя, и как следствие, сильное возрастание их сопротивления. Зная эти три варианта поломок и умея проводить анализ схем и печатных плат, вы научитесь без труда ремонтировать свои электронные устройства . Более подробно про ремонт радиоэлектронных устройств можно прочитать в статье "Основы ремонта ".

Всем удачных ремонтов!

РЕМОНТ КОМПЬЮТЕРНЫХ БЛОКОВ ПИТАНИЯ.

ПРЕДИСЛОВИЕ

Люди, разбирающиеся в железе, при сборке компьютера в первую очередь заботятся о надежности системы, покупая хорошее, проверенное железо, однако они часто забывают едва ли не о главном ее элементе, от которого зависит не только безглючность машины, но и ее работоспособность вообще – о блоке питания. Абсолютное большинство блоков питания, продаваемых на нашем рынке (в том числе идущих вместе с корпусами), имеет ярко выраженное китайское происхождение, причем в худшем смысле этого слова. При этом по-настоящему качественные устройства у нас распространены слабо, и особой популярностью не пользуются, так как их цена как минимум раз в пять больше, чем у китайского барахла. Несведущий в этих делах человек не будет покупать корпус за 100 баксов, если можно купить такой же с виду за 30. Результатом такого выбора становятся полностью выгоревшие компьютеры и потерянная информация.

В чем разница между качественным и дешевым китайским БП.

Разница между дешевым и качественным блоками питания просто огромна. Основные отличия заключаются в некачественных радиоэлементах, непродуманных конструкциях и зверской экономии недобросовестных производителей на всем, чем только можно. Основной причиной выхода из строя таких БП (вместе со всей начинкой компа) является отсутствие защиты, либо ее несрабатывание, тем не менее, большинство таких блоков вполне можно довести до ума. В качестве примера подобного барахла можно привести блоки фирмы JNC, которые из-за конструктивных недоработок сгорают после полугода работы. А контакты разъема ATX последних ради экономии делаются из жести для консервных банок (без преувеличения) в результате чего из-за неплотного соединения происходит подгорание выводов на матери.

РЕМОНТ БЛОКА ПИТАНИЯ СВОИМИ СИЛАМИ.

Меры предосторожности.

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.
Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.
Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Какой инструмент понадобится:

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка.
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр.
Пинцет.
Лампочка на 100Вт.
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Что мы увидим, вскрыв блок питания.

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.
Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.
Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.
Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания;
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG;
БП уходит в защиту;
БП работает, но воняет;
Завышены или занижены выходные напряжения.

Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Термистор.

Задачей термистора является снижение броска тока при включении. При возникновении высоковольтного импульса сопротивление термистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети термистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Термистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же термисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя термистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с термистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены термистора и проверки остальных элементов первичной цепи.

Диодный мост.

Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы.

Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Резисторы.

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые практически не возможно достать принципиальных схем. Ниже представлена таблица цветовой маркировки резисторов:

Диоды и стабилитроны.

Проверяются методом прозвона в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки.

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Проверка диодного моста: Если он выполнен в виде отдельной сборки, его нужно просто аккуратно выпаять и протестировать уже разделенную цепь на печатной плате. В том случае, если выпрямитель выполнен из отдельных диодов, вполне возможно проверить его, не выпаивая их все из платы. Достаточно прозвонить каждый из них на короткое замыкание в обоих направлениях, и выпаивать только подозреваемые в неисправности. Исправный диод должен иметь сопротивление в прямом направлении около 600 Ом и в обратном - порядка 1.3 МОм.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

ШИМ.

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.
Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.
Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Способ проверки внутреннего стабилизатора: Суть способа заключается в проверке внутреннего стабилизатора микросхемы. Этот метод годится для модели tl494 и ее полных аналогов. При отключенном от сети блоке питания нужно подать на 12-ю ножку микросхемы постоянное напряжение от +9 до +12 вольт, при этом подсоединив «минус» к 7-ой ножке, после чего необходимо замерить напряжение на 14-й ножке - оно должно быть равно 5 вольтам. Если напряжение сильно отклонено (±0.5 В), это свидетельствует о неисправности внутреннего стабилизатора микросхемы. Данный элемент лучше купить новый.

По поводу ремонта дежурного питания что-либо конкретное посоветовать трудно - может сгореть все, что угодно, но это компенсируется довольно простым устройством данной части. Будет вполне достаточно полазить по форумам по данной тематике, чтобы найти причину неисправности и метод ее устранения.

Дежурное питание и POWER GOOD.

Теперь рассмотрим другую ситуацию: предохранитель не сгорает, все элементы, упомянутые выше, исправны, но устройство не запускается.

Немного отойдем от темы и вспомним, как работает блок питания стандарта АТХ. В ждущем режиме (именно в нем находится «выключенный» компьютер) БП все равно работает. Он обеспечивает дежурное питание для материнской платы, чтобы ты мог включить или отключить компьютер кнопкой, по таймеру, или при помощи какого-либо устройства. «Дежурка» представляет собой 5 вольт, которые постоянно (пока компьютер включен в электрическую сеть) подаются на материнскую плату. Когда ты включаешь компьютер, материнская плата формирует сигнал PS_ON и запускает блок питания. В процессе запуска системы проходит проверка всех питающих напряжений и формируется сигнал POWER GOOD. В том случае, если по каким-либо причинам напряжение сильно завышено или занижено, этот сигнал не формируется, и система не стартует. Впрочем, как уже упомяналось выше, во многих NONAME блоках питания защита отсутствует напрочь, что пагубно сказывается на всем компьютере.

Итак, первым делом нужно проверить наличие 5 вольт на контактах +5VSB и PS_ON. Если на какомто из этих контактов напряжения нет или оно сильно отличается от номинала, это указывает на неисправности либо в цепи вспомогательного преобразователя (если нет +5 vsb), либо на неисправность ШИМ контроллера или его обвязки (неработоспособность PS_ON).

Дроссель групповой стабилизации (ДГС).

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

Трансформаторы.

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.

После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.

PS

Ремонт компьютерного блока питания нельзя назвать простым делом, тем не менее, в 70% случаев его можно осуществить в домашних условиях, без специального оборудования. В этом деле очень сильно помогает информация, имеющаяся в больших количествах на просторах Интернета. И помни, главное - не сделать хуже (читай «не доломать»), поэтому производить все манипуляции с блоком надо, предварительно хорошо обдумав свои действия, не спеша и аккуратно.

Набор схем Вам в помощь.

Неисправности, при которых требуется ремонт блока питания компьютера. Диагностика конденсаторов и предохранителя, замена необходимых элементов.

350 р. RUB

Корректная подача тока является залогом нормальной работы машины и всех ее комплектующих, ведь в случае скачков напряжения, владелец рискует столкнуться с целым рядом неприятностей. Однако БП также имеют неприятное свойство выходить из строя.

Стоимость услуги 350 Р.

Задача, которую стоить доверить профессионалам! Мы выполним ее с гарантией и в кротчайшие сроки!

Что делать в такой ситуации? Выход один – ремонт блока питания компьютера. И сегодня поговорим о том, как это делается.

Определяем неисправность

Прежде чем приступать к каким-либо работам, прежде всего, нужно установить, какая именно деталь является причиной неисправности ПК . Вы считаете, что необходим ремонт БП компьютера?

Первоначально нужно убедиться в его отказе . В специализированных сервисных центрах диагностика проводится на соответствующем оборудовании, которое позволяет быстро подтвердить или опровергнуть опасения. Но, разумеется, его у обывателя попросту нет, а установить причину нужно.

Есть один весьма рискованный, но надежный способ.

Суть метода заключается в отключении БП от всех остальных узлов компьютера. Включенным должен остаться только один, ответственный за нагрузку блока питания. Прежде всего, нужно знать, что ток подается на материнскую плату от блока питания несколькими разъемами. Как правило, это:

  • 20 и 24;
  • 4 и 6.

Все разъемы фиксируются в гнездах при помощи специального крепления с защелкой.

Для того чтобы извлечь их, необходимо с силой нажать на них и, аккуратно пошатывая, вынуть.

Нужно быть очень осторожным, поскольку если надавить слишком сильно, они могут сломаться.

Затем берется кусочек проволоки или скрепка и закорачиваются два вывода, от которого запитывается материнка. А вот какие из них нужны, зависит от типа разъема. В частности, это могут быть:

  • 14 и 15 в разъеме на 20 контактов
  • 16 и 17 в разъеме на 24 контакта

В обоих случаях, первыми обозначены провода, обеспечивающие питание. Они могут маркироваться, как P On или Power On. Оплетка кабеля, как правило, имеет зеленый цвет, реже встречаются серые экземпляры. Второй необходимый контакт маркируется GND и окрашен в черный цвет. Указанные провода находятся рядом друг с другом, поэтому хватит и маленькой перемычки. В этот момент должен начать работать кулер.

Если нужный эффект достигнут, БП исправен. Если нет – источник неполадок обнаружен.

В сервисных центрах, осуществляющих ремонт компьютерных блоков питания, неисправности определяются при помощи специального оборудования. Суть заключается в замере выходного напряжения, а также в размахе пульсации. Существует специальная таблица данных показателей, в которой указываются максимальные и минимальные граничные значения.

Если один из них по какому-либо контакту отклоняется от нормы, тогда можно констатировать наличие проблем.

Электрическая схема

Блок питания ПК является одним из наиболее сложно устроенных элементов машины. Поэтому его самостоятельный ремонт требует особых навыков в радиотехнической отрасли. Для того, чтобы у пользователя была теоретическая возможность починить его самостоятельно, необходимо уметь читать электрические схемы и подробно знать схему устройства БП.

Итак, электричество из сети энергоснабжения поступает на блок питания при помощи сетевого провода, который подключается к плате устройства. На его пути встречается несколько уровней защиты.

Первым элементом служит предохранитель (на схемах обозначается как Пр 1). Как правило, такие устройства рассчитаны на работу с током 5А, однако могут устанавливаться и предохранители с большим номиналом. Чуть далее в цепи располагается дроссель (обозначается как L1) и четыре конденсатора (С1, С2 и т.д.).

Данный комплект необходим для устранения возможных помех синфазного и дифференциального характера, они могут приходить как извне, так и образоваться при работе БП. Обратим внимание, что такое решение используется на любой технике, в которую не устанавливается силовой трансформатор, например:

  • В телетехнике;
  • В устройствах печати и сканирования;
  • В видеопроигрывателях и т.д.

Кстати, этот фильтр – одно из основных преимуществ оригинального БП над дешевой подделкой: на китайских устройствах он, как правило, не устанавливается. Поэтому и служат они гораздо меньше и проблем с ними гораздо больше. Соответственно, при разборке неоригинального блока питания в специализированных мастерских, специалисты устанавливают данный элемент (с донорского устройства). Это позволяет избежать целого ряда неприятностей в будущем.

Если на вашем компьютере установлен блок питания за серьезную сумму, в его цепи могут присутствовать специальные защитные элементы – варисторы. На электрических схемах они обозначаются буквой Z.

Принцип их работы заключается в резком изменении сопротивления. В нормальном состоянии оно столь велико, чтобы не принимать участия в работе системы. При критическом росте напряжения, сопротивление понижается, из-за чего выгорают предохранители. При этом остальные детали блока питания и компьютера в целом остаются в порядке. Ремонт такой неисправности заключается только в замене неисправного предохранителя.

Еще одним возможным защитным элементом системы может являться термический резистор (RT) с отрицательным коэффициентом теплового сопротивления. Назначение схоже с предыдущим защитным элементом, но основное отличие заключается в принципе работы. Если варистор понижает сопротивление при увеличении напряжения, то тепловой резистор – при критическом нагреве. В холодном состоянии, значение сопротивления слишком высоко, но если температура увеличивается, оно падает и предохранитель сгорает.

Для запуска устройства используется отдельный источник питания, напряжение которого составляет около 5В. Он находится в заряженном состоянии даже если сам компьютер отключен, но запитан от электросети.

В основу его работы был положен принцип блокинг-генератора, в котором устанавливается единственный транзистор, а в качестве выпрямителей используется несколько диодов (на схемах обозначаются как VD1, VD2 и т.д.) Если он выйдет из строя, компьютер попросту не сможет запуститься, а его ремонт является одним из самых проблематичных.

В компьютере устройство закрепляется при помощи четырех винтов. Увидеть их вы сможете, если посмотрите на заднюю стенку системника, как правило, БП устанавливается в верхней его части. При осмотре, провода отключать не обязательно, достаточно вынуть из гнезд только те, которые натягиваются сильнее остальных.

Помимо крепежных элементов на задней панели, блок питания также закрепляется и сбоку, там вы тоже можете обнаружить четыре винта. Некоторые из них могут быть скрыты наклейками, поэтому их нужно будет продавить отверткой.

Разбирая компьютер, его нужно обязательно почистить . Важно знать, что пылевые загрязнения в устройстве снижают теплоотдачу деталей. Соответственно, подавляющее большинство случаев сгорания аппаратуры происходит именно из-за пыли или скачков напряжения в сети.

Как определить неисправность?

Прежде всего, при поиске поломок блоков питания, проводится визуальный осмотр сохранности геометрии конденсаторов. Именно эти детали перегорают чаще всего, как правило, это происходит из-за критического повышения температурного режима. Считается, что ровно половина всех неисправностей блоков питания связана именно с конденсаторами, поэтому они должны быть первым объектом осмотра.

Многие неисправности в системе так или иначе взаимосвязаны, например, при обнаружении вздутия конденсаторов, необходимо убедиться и в корректной работе системы охлаждения. Часто работа вентилятора ухудшается из-за отсутствия смазки, которая со временем попросту вырабатывается. В таком случае отмечается существенное снижение качества обдува системы, что становится причиной перегрева многих узлов компьютера. В таком случае необходимо смазать вентилятор и вычистить его от пыли.

Итак, если на плате блока питания наблюдаются остатки электролита или вздутие конденсатора, причина неисправности понятна. Решение проблемы – замена детали на рабочую. Еще одна возможная причина отказа данного элемента заключается в возможности электрического пробоя проводников.

Может возникнуть такая ситуация, при которой конденсатор внешне исправен, электролита на плате не наблюдается, а пульсация выходящих напряжений находится на критически высоком уровне. В данном случае также можно грешить на данный элемент, поскольку нарушается связь между его обкладкой и выходом.

Для диагностики таких неисправностей проводится замер сопротивления. Для этого используется специальное оборудование.

Если конденсаторы исправны и никаких проблем с сопротивлением нет, значит следует обратить внимание на прочие детали. Сначала необходимо оценить состояние предохранителя, дальше просмотреть другие защитные элементы и в конечно итоге тестируются полупроводниковые элементы. Неисправность предохранителя диагностируется очень просто, он имеет форму прозрачного цилиндра с маленькой проволочкой внутри.

Если ее видно, значит все в порядке, если нет – проблема очевидна. Для подтверждения диагноза, также необходимо провести замер сопротивления. Самым простым решением данной проблемы будет замена детали на новую, хотя вообще предохранители часто подлежат ремонту. Но, как правило, он не имеет смысла из-за трудоемкости, гораздо проще установить новый.

Еще один способ тестирования детали – припаивание к нему небольшой медной жилы. В случае исправности данного элемента, она быстро перегорит. Если такого не наблюдается – тогда лучше попросту установить новый предохранитель.

Замена предохранителя

Как правило, в БП применяются классические предохранители, представляющие собой специальную проволочку, заключенную в стеклянный корпус. Чаще всего, в такие устройства устанавливаются элементы, рассчитанные на ток в 5А.

Деталь впаивают в печатную плату, поэтому необходимо использование предохранителей со специальными выводами. Замена такого элемента осуществляется достаточно просто: берется его аналог на 5А и перепаивается на его место, с использованием дополнительных жилок, толщиной 0.5 мм при длине в 5 мм.

После этого, нужно только проверить успешность работы, подключив блок питания к сети. Такая работа считается одной из самых простых при устранении неисправностей блоков питания.

Если же в результате тестирования предохранитель выбил повторно, скорее всего, проблема заключается в отказе других деталей платы. Устранить их своими силами, как правило, нереально. Для диагностики и для работы нужно соответствующее оборудование, которого у любителей, как правило, попросту нет.

Устанавливать предохранители с большим значением силы тока, в данном случае, бессмысленно. Если какой-либо элемент платы неисправен, значит деталь все равно выбьет. Единственный выход – обращение к специалистам.

Диагностика конденсаторов

Еще одной довольно распространенной проблемой отказа блока питания или посредственной работы компьютера является вздутие конденсаторов. Поскольку данные элементы, при определенных условиях, могли бы попросту взрываться, при их изготовлении на них делаются специфические засечки.

Благодаря им можно легко определить неисправную деталь даже без глубокой диагностики. Вздутие элементов осуществляется из-за повышения температур до критического значения. Причинами тому могут служить:

  • Плохая работа системы охлаждения (в частности, кулера).
  • Неисправность электрических элементов, что вызывает пробой с перегревом.

Указанные засечки всегда находятся на верхней части конденсатора, определить их не составит никакого труда. Если вы видите, что на детали появилось отверстие, значит ее необходимо устранить и заменить исправной. Наиболее часто пользователи сталкиваются с проблемами элементов по пятивольтовой шине.

Причина тому – критически малый запас напряжения, как правило, конденсаторы не способны выдерживать увеличение свыше 6.3В. В мастерских вместо них устанавливают детали с повышенным ресурсом. Обычно – 10В. Считается, что чем больше вольтаж элементов – тем лучше для блока питания, но проблема часто заключается в невозможности их установки из-за габаритов. Как бы там не было, всегда подбираются устройства оптимальных размеров с максимальным значением напряжения.

Установка новых конденсаторов осуществляется при помощи обыкновенного паяльника. Данный процесс не столько сложный, сколько тонкий и требует соблюдения важных правил.

Распространенной ошибкой является неправильное подключение детали. Пользователи часто путают плюсовой и отрицательный выходы, из-за чего всю работу необходимо переделывать заново. Они маркируются специфическим образом и необходимо проследить, чтобы отметка на новом конденсаторе находилась на той же стороне, что и на старом.

Прочие элементы

Важно обращать внимание на наличие нагара на резисторах. Полупроводники, которые располагаются на плате, должны иметь полностью целые корпуса без каких-либо повреждений.

Основная проблема самостоятельного ремонта, в данном случае, заключается в возможности замены ограниченного количества элементов.

Например, если вы обнаруживаете отказ транзистора или потемнение корпусов резисторов, менять их своими силами бессмысленно.

Для того чтобы установить причины такой неисправности, необходимо воспользоваться профессиональным оборудованием. А без устранения предпосылок, работы не имеют никакого смысла. В данном случае, даже невозможно установить, действительно ли резистор неисправен. Если он потемнел – это не говорит о том, что он отказал. Аналогично бессмысленно производить своими силами ремонт электролитических конденсаторов, если вы обнаружите, что они повздувались все.

Значит проблема кроется гораздо глубже, скорее всего, в схеме стабилизации напряжения. Для этого также очень важно иметь соответствующее оснащение.

Также бессмысленно приступать к работам и не имея соответствующих навыков пайки. Плата блока питания – далеко не лучшее место для экспериментов или для самообучения работе. Неквалифицированная пайка может привести к более глобальному выходу БП из строя, в таком случае, скорее всего, его сможет спасти только замена.

Поэтому если у вас внезапно отказал блок питания, лучше не старайтесь осуществлять его ремонт самостоятельно. За этим лучше обратиться к специалистам.

Мы поможем Вам произвести ремонт блока питания!

Компания «Эксперт» – это самый надежный ремонт вашего компьютера и любого его узла. В нашем штате работает ряд специалистов , подкованных в радиотехническом деле, благодаря чему мы сможем определить любую неисправность платы. Более того, благодаря соответствующему оборудованию, мы сможем определить и причины, которые привели к возникновению проблемы.

Компания «Эксперт» делает все для того, чтобы ваш компьютер радовал вас надежной и стабильной работой без каких-либо неисправностей.

Блок питания является важным компонентом системы, и без него компьютер просто не сможет работать. Он обеспечивает требуемой электрической энергией все потребители внутри корпуса компьютера, при этом преобразуя поступающее из розетки переменное напряжение в постоянное. Выбирая блок питания для компьютера, необходимо руководствоваться его мощностью, исходя из количества потребителей, которые будут к нему подключены. Если блок питания выйдет из строя, не будет работать весь компьютер. Именно поэтому, если компьютер перестал включаться, важно проверить блок питания на работоспособность, и имеется несколько способов, как это сделать.

Рекомендуем прочитать:

Признаки неисправности блока питания

Нет конкретного симптома, по которому можно было бы сказать, что из строя в компьютере вышел именно блок питания. Имеется ряд признаков, которые характерны для поведения компьютера при неисправности питающего элемента. Можно констатировать, что блок питания не работает в должном режиме (или имеется другая проблема) при следующем «поведении» компьютера:

  • При нажатии на кнопку включения не происходит ничего, то есть, нет световой, звуковой индикации и кулеры не начинают вращаться. Поскольку блок питания является компонентом, который питает другие элементы постоянным напряжением, велика вероятность, что он вышел из строя или имеются другие проблемы с передачей питания на элементы компьютера – разрывы в проводах, нестабильная подача переменного напряжения из сети;
  • Включение компьютера происходит не всегда с первого раза. В такой ситуации может быть виноват блок питания, плохое соединение разъемов или неисправность кнопки включения;
  • Компьютер самопроизвольно выключается на этапе загрузки операционной системы. Это может происходить из-за прерывистой передачи напряжения от блока питания на другие компоненты компьютера. Так же подобная проблема может указывать на перегрев блока питания и принудительное отключение.

Блок питания – надежный элемент компьютера, который крайне редко приходит в негодность. Если блок питания сломался, причиной тому является его низкое качество изготовления или подача по сети напряжения с постоянными перепадами. Кроме того, блок питания может выйти из строя, если неверно произведен расчет при его подборе для конкретной конфигурации компьютера.

Как проверить блок питания

Если у компьютера появился один из симптомов, перечисленных выше, не следует сразу грешить на блок питания. Неисправность может возникать и по другим причинам. Чтобы точно убедиться в наличии проблем с питающим компонентом системы, необходимо провести диагностические работы. Имеется 3 метода, как проверить блок питания компьютера самостоятельно.

Шаг 1: Проверка передачи напряжения блоком питания

Чтобы убедиться в том, что блок питания включается, необходимо выполнить следующую проверку:


Необходимо отметить, что данная проверка показывает работоспособность блока питания на включение. Но даже в том случае, если по ее результатам кулер блока питания начал вращаться, это еще не значит, что устройство полностью исправно. Перейдите к следующим шагам проверки блока питания.

Шаг 2: Как проверить блок питания мультиметром

Если вы убедились, что блок питания получает напряжение от сети и при этом работает, необходимо проверить, отдает ли он требуемое постоянное напряжение. Для этого:

  1. Подключите к блоку питания любое внешнее сопротивление – дисковод, жесткий диск, кулеры;
  2. Далее возьмите мультиметр, выставленный на измерение напряжения, и подключите отрицательный вывод диагностического прибора к черному контакту 20/24-выводного разъема блока питания. Черный контакт при подобном подключении считается заземлением. Положительный щуп мультиметра подключите поочередно к контактам разъема, к которым подходят провода следующих цветов, а также сравните значения с идеальным напряжением:

В ходе измерения возможны погрешности в ±5%.

Если измеренные значения отличаются от идеальных, можно диагностировать неисправность блока питания и необходимость его замены.

Шаг 3: Как визуально проверить блок питания

При отсутствии мультиметра (или при необходимости дополнительной диагностики) можно визуально проверить блок питание на наличие неисправности. Для этого:


Когда проблем с конденсаторами не наблюдается, рекомендуется удалить всю пыль из блока питания, смазать вентилятор и собрать устройство обратно, а после попробовать подключить.

Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, - 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, - линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом - транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина - скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило - около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то - для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные - тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

⇡ Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП - электромагнитных помех (RFI filter);
  2. первичная цепь - входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь - выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

⇡ Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) - когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) - когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, - импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV - Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте - вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае - нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

⇡ Входной выпрямитель

После фильтра переменный ток преобразуется в постоянный с помощью диодного моста - как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, - атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

⇡ Блок активного PFC

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, - такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) - не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий - около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой - что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество - не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

⇡ Основной преобразователь

Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

Транзисторы Диоды Конденсаторы Ножки первичной обмотки трансформатора
Single-Transistor Forward 1 1 1 4
2 2 0 2
2 0 2 2
4 0 0 2
2 0 0 3

Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

Single-Transistor Forward

⇡ Вторичная цепь

Вторичная цепь - это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой - 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки - одной или нескольких на шину (на самой высоконагруженной шине - 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В - экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно - на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других - падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

⇡ Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

⇡ Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой - совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ - для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

Другой не менее важный тест - определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ - для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый - 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

Более насущный для пользователя вопрос - шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром - также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.